УТВЕРЖДАЮ Генеральный директор ЗАО КИП «МЦЭ»

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

инструкция

ТЕРМОКОНТРОЛЛЕРЫ А1 МЕТОДИКА ПОВЕРКИ МЦКЛ.0205.МП Настоящая методика поверки распространяется на термоконтроллеры A1 (далее – термоконтроллеры) изготовленные фирмой «AONETECH», Корея и представленных ООО «Термал Мастер Рус», г. Нижний Новгород.

Методика поверки устанавливает методы и средства первичной (при вводе в эксплуатацию и/или после ремонта) и периодической поверок.

Термоконтроллеры состоят из электронного блока, размещенного в пластиковом корпусе со встроенным светодиодным дисплеем, и двух термопреобразователей сопротивления (pt1000) соединенных с электронным блоком линиями связи, образующие измерительные каналы (далее - ИК1 и ИК2).

Интервал между поверками – два года.

1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции, указанные в табл.1.

Таблица 1 – Операции поверки

	Номер пункта	Проведение операций при	
Наименование операции	документа по	первичной	периодической
	поверке	поверке	поверке
1 Внешний осмотр	7.1	+	+
2 Опробование	7.2	+	+
3 Проверка идентификационных данных программного обеспечения	7.3	+	+
4 Определение метрологических характеристик (MX)	7.4	+	+
5 Оформление результатов поверки	8	+	+

1.2 Поверка прекращается при получении отрицательных результатов при проведении хотя бы по одной из операций поверки, приведенных в таблице 1, и оформляются результаты поверки в соответствии с п. 8.5 раздела 8.

2 Средства поверки

- 2.1 Перечень средств измерений и вспомогательного оборудования, применяемых при проведении поверки:
- термостат переливной прецизионный ТПП-1.1 диапазон воспроизводимых температур от минус 40 до плюс 100 °C, нестабильность поддержания температуры, не более \pm 0,01 °C;
- термометр цифровой ТЦ 1200 в комплекте с зондом ТЦЩ-1, диапазон измерений от минус 80 до плюс 300 °C. Пределы допускаемой абсолютной погрешности \pm (0,02+0,0005·|t|) °C, где t измеряемое значение температуры, °C.
- 2.2 Допускается применение других средств измерений и оборудования, не приведенных в 2.1, но обеспечивающих определение метрологических характеристик поверяемого средства измерения с требуемой точностью.
 - 2.3 Все средства измерений (рабочие эталоны) должны быть поверены.

3 Требования к квалификации операторов

К выполнению поверки допускают лиц, достигших 18 лет, прошедших обучение и проверку знаний требований охраны труда в соответствии с ГОСТ 12.0.004-90, изучивших настоящую методику поверки, эксплуатационные документы (ЭД) на термоконтроллеры, средства поверки и прошедшие инструктаж по технике безопасности.

4 Требования безопасности

При подготовке и проведении поверки необходимо соблюдать требования безопасности, установленные в нормативно-методической документации, и ЭД на применяемые средства поверки.

5 Условия поверки

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С

 $20\pm 5.$

- относительная влажность окружающего воздуха, %

65-80;

- атмосферное давление, кПа

84-106,7;

- отсутствие внешних электрических и магнитных полей, кроме геомагнитного;
- отсутствие механической вибрации, тряски и ударов, влияющих на работу термоконтроллеров.

6 Подготовка к поверке

- 6.1 Проверить наличие действующих свидетельств о поверке на средства поверки и оборудование.
 - 6.2 Проверить работоспособность средств поверки.
- 6.3 Проверить соответствие условий проведения поверки условиям применения средств поверки.
- 6.4 Термоконтроллеры, средства поверки и вспомогательное оборудование готовится к работе в соответствии с ЭД на них.

7 Проведение поверки и обработка результатов

7.1 Внешний осмотр

При внешнем осмотре должно быть установлено:

- наличие ЭД и правильность оформления отметок о поверке и ремонте;
- отсутствие механических дефектов;
- соответствие маркировки данным, указанным в ЭД;
- наличие свидетельства о предыдущей поверке. В случае если термоконтроллер находился в ремонте или на консервации, то в ЭД должна быть соответствующая отметка. После ремонта термоконтроллер подвергается первичной поверке.

7.2 Опробование

При опробовании проверяют работоспособность термоконтроллера, при этом проверяют:

- функционирование дисплея, исправность элемента управления и возможность беспрепятственной навигации по меню пользователя;
- работоспособность внешнего интерфейса (при использовании сервисного программного обеспечения);
 - наличие выходного сигнала интерфейса связи.

Далее, с помощью испытательного оборудования (термостат) создают температуру $20\,^{\circ}$ С, которую контролируют образцовым термометром. Термопреобразователи сопротивления платиновые (pt1000) входящие в состав ИК1 и ИК2 помещают в термостат на одну глубину с образцовым термометром и выдерживают не менее одной минуты, далее фиксируют (записывают) показания образцового термометра (t_{37}) и показания по каждому ИК испытуемого термоконтроллера (t_{43M} (ИК1), t_{43M} (ИК2)) в протоколе поверки.

Результаты поверки по данному пункту считать положительными, если абсолютная погрешность каждого ИК: $\Delta_{t(ИК1)}$ и $\Delta_{t(ИK2)}$, рассчитанная по формуле 1, не превышает пределы допускаемой погрешности ± 0.3 °C.

$$\Delta t_{(HKj)} = t_{usm(HKj)} - t_{st} \tag{1}$$

- 7.3 Проверка идентификационных данных программного обеспечения
- 7.3.1 Проверку идентификационных данных программного обеспечения (ПО) производить путем сличения идентификационных данных ПО, приведенных в разделе «Программное обеспечение» документа «Термоконтроллеры А1. Руководство по эксплуатации» на термоконтроллера с идентификационными данными ПО, указанными в таблице 2.

Таблица 2 – Идентификационные данные ПО

Идентификационные данные (признаки)	Значение Embeded 'C' (TMS-A1T01)	
Идентификационное наименование ПО		
Номер версии (идентификационный номер) ПО	V1.00	
Цифровой идентификатор (контрольная сумма) метрологически значимой части ПО	918F	
Алгоритм вычисления цифрового идентификатора ПО	CRC16	

7.3.2 Результаты проверки считаются положительными, если установлено полное соответствие идентификационных данных.

7.4 Определение МХ

Основную абсолютную погрешность для испытуемого образца термоконтроллера определяем методом сличения с образцовым термометром в термостатах при 5-ти значениях измеряемой величины (контрольные точки, i=1, 2, 3, 4, 5), где: достаточно равномерно распределенных в диапазоне измерений, в том числе при значениях измеряемой величины, близких к нижнему и верхнему предельным значениям, и нулю.

Погрешность определяют при значении измеряемой величины, полученной при приближении к нему как от меньших значений к большим ($i1 \rightarrow i2 \rightarrow i3 \rightarrow i4 \rightarrow i5$), так и от больших к меньшим ($i5 \rightarrow i4 \rightarrow i3 \rightarrow i2 \rightarrow i1$), при прямом и обратном ходе.

Термопреобразователи сопротивления платиновые (pt1000) входящие в состав ИК1 и ИК2 помещают в термостат на одну глубину с образцовым термометром и выдерживают не менее одной минуты, далее фиксируют (записывают) показания образцового термометра $(t_{\rm 13T})$ и показания по каждому ИК испытуемого термоконтроллера $(t_{\rm IISM(ИК1)})$, $t_{\rm IISM(ИК2)})$ в протоколе испытаний.

Далее для каждой контрольной точки по формуле 1 вычисляют погрешность $\Delta t_{(I/K_j)}$. Результаты испытаний по данному пункту считать положительными, если выполняется условие $\Delta t_{(i)(I/K_j)} \leq \pm 0.3$ °C.

8 Оформление результатов поверки

- 8.1 Результаты поверки оформляют протоколами произвольной формы.
- 8.2 При положительных результатах поверки оформляют свидетельство о поверке в установленном порядке.
 - 8.3 Знак поверки наносится на свидетельство о поверке термоконтроллера.
- 8.4 В целях предотвращения доступа к узлам регулировки и (или) элементам конструкции производят пломбировку термоконтроллеров. Схемы пломбировки термоконтроллеров представлены на рисунке 1.

Схема пломбировки термоконтроллера представлены на рисунке 1.

Рисунок 1 – Схемы пломбировки термоконтроллера

8.5 При отрицательных результатах поверки термоконтроллеров к применению не допускают, свидетельство о поверке аннулируют и выписывают извещение о непригодности к применению в установленном порядке.

Начальник отдела программного и информационного обеспечения ЗАО КИП «МЦЭ»

А.Ю. Поддубный